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Enhancer‑promoter interaction maps 
provide insights into skeletal muscle‑related 
traits in pig genome
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Abstract 

Background:  Gene expression programs are intimately linked to the interplay of active cis regulatory elements 
mediated by chromatin contacts and associated RNAs. Genome-wide association studies (GWAS) have identified 
many variants in these regulatory elements that can contribute to phenotypic diversity. However, the functional 
interpretation of these variants remains nontrivial due to the lack of chromatin contact information or limited contact 
resolution. Furthermore, the distribution and role of chromatin-associated RNAs in gene expression and chromatin 
conformation remain poorly understood. To address this, we first present a comprehensive interaction map of nuclear 
dynamics of 3D chromatin-chromatin interactions (H3K27ac BL-HiChIP) and RNA-chromatin interactions (GRID-seq) to 
reveal genomic variants that contribute to complex skeletal muscle traits.

Results:  In a genome-wide scan, we provide systematic fine mapping and gene prioritization from GWAS leading 
signals that underlie phenotypic variability of growth rate, meat quality, and carcass performance. A set of candi-
date functional variants and 54 target genes previously not detected were identified, with 71% of these candidate 
functional variants choosing to skip over their nearest gene to regulate the target gene in a long-range manner. The 
effects of three functional variants regulating KLF6 (related to days to 100 kg), MXRA8 (related to lean meat percent-
age), and TAF11 (related to loin muscle depth) were observed in two pig populations. Moreover, we find that this 
multi-omics interaction map consists of functional communities that are enriched in specific biological functions, and 
GWAS target genes can serve as core genes for exploring peripheral trait-relevant genes.

Conclusions:  Our results provide a valuable resource of candidate functional variants for complex skeletal muscle-
related traits and establish an integrated approach to complement existing 3D genomics by exploiting RNA-chroma-
tin and chromatin-chromatin interactions for future association studies.
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Background
Pig (Sus scrofa), a major farm animal worldwide, is one 
of the attractive models for genetic and genomic research 
due to its phenotypic diversity. Since its domestica-
tion about 10,000 years ago [1, 2], pigs have been sub-
ject to local adaptation and artificial selection, resulting 
in an obvious phenotypic split between different breeds 
in Europe and China [3]. For example, commonly used 
commercial lean breeds, such as Large White (LW) and 
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Duroc (DU), have been strongly selected for skeletal 
muscle-related traits, including lean meat mass, daily 
gain, and feed conversion ratio. In contrast, local Chi-
nese pig breeds such as Meishan (MS), perform relatively 
poorly on these traits, but have higher intramuscular fat 
content. In addition, pigs are biomedical models that are 
closer to humans than laboratory mice in terms of genet-
ics, anatomy, and physiology [4]. Using pigs as a research 
model allows research on human diseases such as Duch-
enne muscular dystrophy [5], human type II diabetes 
[6], and heart xenotransplantation [7]. Therefore, great 
efforts including GWAS and genome-wide surveys have 
been made to identify genomic variants that contribute 
to complex phenotypic features in pigs over the past dec-
ade. However, the vast majority of these variants are pre-
sent in noncoding regions, complicating the molecular 
interpretation of their mode of action.

Recent developments of the epigenomics make it pos-
sible to address these challenges. For example, open 
chromatin and histone modification play important roles 
in transcriptional regulation in both human and agricul-
tural animals [8, 9]. Furthermore, extensive long-range 
chromatin interaction maps show that cis-regulatory 
elements contact each other in a hierarchical pattern in 
the three-dimensional genome [10]. Specifically, higher-
order chromatin folds into megabase-sized topologically 
associating domains (TADs) that compartmentalize and 
insulate the genome [11–13]. Within TADs, regulatory 
gene expression programs were established in chromatin 
loops by bringing promoters and their distal regulatory 
elements into close physical proximity [14, 15]. Together, 
these advances contribute to an efficient approach to 
connecting GWAS leading signals to their target genes 
in complex traits. Our previous work has systematically 
characterized cis-regulatory elements in 12 tissues from 
four pig breeds and chromatin conformation in LW [16], 
which provides detailed comparative epigenetic data rel-
evant to humans. However, global high-resolution map-
ping of GWAS leading signals to their target genes is still 
lacking, especially in the context of complex muscle-
related traits.

Here we performed a systematic and deep analysis to 
identify the functional variants and to elucidate the gene 
regulatory mechanisms underlying the genetic associa-
tions reported in recent GWAS collections. We identified 
candidate functional variants from promoter-anchored 
active cis-regulatory elements interactome by integrating 
H3K27ac BL-HiChIP and GRID-seq. We identified 223 
candidate functional single-nucleotide polymorphisms 
(SNPs) regulating 54 target genes related to 15 skeletal 
muscle traits and revealed the regulatory mechanisms 
of these SNPs. Furthermore, we observed the regulatory 
effects of 3 candidate functional SNPs and established 

functional networks based on chromatin and RNA inter-
actions. Taken together, these results emphasize the 
value of creating high-resolution cis-regulatory interac-
tion maps for understanding the mechanisms through 
which candidate functional variants affect the expression 
of genes related to skeletal muscle traits.

Results
Characterization of epigenetic landscape of skeletal 
muscle
Regulatory elements often interact with genes over long 
genomic distances, thus preventing the correct identi-
fication of target genes and limiting the interpretation 
of functional noncoding variants of GWAS. In order to 
investigate the global epigenetic landscape of transcrip-
tion networks and identify new associations of variants 
with target genes, we performed a multi-omics analysis 
of LW and MS skeletal muscle tissues (Fig. 1a). We used 
H3K27ac BL-HiChIP to identify chromatin interactions 
on active cis-regulatory elements. After read mapping 
and noise removal, approximately 200 million unique 
contact pairs for each breed were retained and assigned 
to a 5-kb fragment (Additional file  2: Table  S1). High 
concordance was observed between replicates (Addi-
tional file  1: Fig. S1a and Additional file  2: Table  S2). 
Approximately 85% of the loop anchors were found to be 
covered by H3K27ac ChIP-seq peaks (Additional file  1: 
Fig. S1b), and they were enriched with open chromatin 
(Additional file  1: Fig. S1c), indicating the reliability of 
loop anchors. A total of 103,511 and 84,723 chromatin 
loops were identified in LW and MS by FitHiChIP [17], 
respectively. We found that the LW chromatin interac-
tion level was stronger on LW loop anchors than on MS 
loop anchors and that the MS chromatin interaction 
level was stronger on MS loop anchors than on LW loop 
anchors, which revealed breed-specific chromatin inter-
actions in LW and MS (Additional file  1: Fig. S1d). We 
calculated the total contact counts of each detected loop, 
and about 40% of loops were supported by more than 
20 contact counts (Additional file  1: Fig. S1e). In addi-
tion, the majority of interactions occurred within TADs 
(Additional file 1: Fig. S2a), suggesting the insulation role 
of TADs as a basic compartment for genome architec-
ture [18]. The median interaction distance of both breeds 
was around 80 kb with most interaction distance ranging 
from 100 Kb to 1 Mb (Additional file 1: Fig. S2b and S2c). 
Moreover, about 75–76% of enhancers chose to skip over 
the nearest gene to regulate their target genes in a long-
range interaction manner (Fig.  1b and Additional file  1: 
Fig. S2d). For example, the analysis of the best-known 
meat quality-associated gene PRKAG3 indicated that 
the exact identification of target genes of any particular 
functional elements/variants might depend on detecting 
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high-resolution chromatin interaction rather than seek-
ing them from adjacent genes (Additional file 1: Fig. S2e).

We obtained 248 GWAS leading signals and 14 
QTLs from the previously published datasets and clas-
sified them into three categories (Additional file  2: 
Table  S3, S4, and S5). The first category was growth-
related traits, including feed conversion ratio (FCR), 
average daily gain (ADG), days to 100 kg (AGE), body 
weight (BW), and breeding values of FCR and AGE. 
The second category was meat quality-related traits, 
consisting of meat color score, conductivity, drip loss, 
marbling score, moisture, pH, and intramuscular fat 
(IMF). The last category was carcass-associated traits, 
including loin muscle depth at 100 kg (LMD) and lean 
meat percentage at 100 kg (LMP/PCL). Specifically, we 
examined the distribution of aforementioned GWAS 
signals (Fig.  1c) and noticed that leading signals of 
meat quality and carcass-relevant traits were enriched 
in only several chromosomes, while leading signals of 
growth-related traits were extensively spread across the 

genome, indicating that growth traits were much more 
complex and might be modulated by a large number of 
weak- or moderate-effect variants [19].

Meanwhile, we used GRID-seq to identify chroma-
tin-associated RNAs (caRNAs) and RNA-chromatin 
interactions. Most RNA–chromatin interactions were 
highly reproducible (Additional file  1: Fig. S3a) from 
the entire genome (Additional file 1: Fig. S3b) and from 
an enlarged view of a single chromosome (Additional 
file  1: Fig. S3c). In total, 1942 and 1488 caRNAs were 
identified from LW and MS by using uniquely mapped 
RNA-DNA read pairs, respectively. Comparative analy-
sis revealed that 730 caRNAs were LW-specific; 276 
caRNAs were MS-specific; and 1212 caRNAs were 
shared by both breeds (Additional file 1: Fig. S4a). Most 
RNA reads were mainly from various genic regions, 
indicating their origins of spliced transcripts, while an 
increased proportion of DNA reads resided in inter-
genic regions (Additional file  1: Fig. S4b), revealing 
the potential regulatory function of caRNAs through 

Fig. 1  Study design and features of epigenetic landscape of skeletal muscle in LW and MS. a Integrated analyses based on enhancer-promoter 
interaction maps and GWAS leading signals. b Pie charts showing that 75–76% enhancers chose to skip over their nearest gene to regulate target 
genes in a long-range manner. c GWAS leading signals of 15 muscle-associated traits. The first category was growth-related traits, including feed 
conversion ratio (FCR), average daily gain (ADG), days to 100 kg (AGE), body weight (BW), and breeding values of FCR and AGE. The second category 
was meat quality-related traits, consisting of meat color score, conductivity, drip loss, marbling score, moisture, pH, and intramuscular fat (IMF). The 
last category was carcass-associated traits, including loin muscle depth at 100 kg (LMD) and lean meat percentage at 100 kg (LMP/PCL)
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various binding loci. In addition, the first eigenvalue 
of Hi-C contact matrix exhibited a genome-wide cor-
relation with GRID-seq DNA reads density (R = 0.84, 
P value < 2×10−16) (Additional file 1: Fig. S4c), suggest-
ing an association of 3D genome spatial conformation 
and caRNA distribution. Each caRNA was classified 
into three types according to interaction range: local 
(±10 kb flanking their genes), cis (beyond local regions, 
but in the same chromosome), and trans (across differ-
ent chromosomes). In both LW and MS, the majority 
of RNAs (both protein-coding and non-coding) exhib-
ited a clear trend of proximal interaction near their 
transcription sites, indicating local interaction and cis 
interaction (Additional file  1: Fig. S3b and S4e). Inter-
estingly, the caRNAs of protein-coding TTN were 
widely spread across the genome, implying a trans 
interaction pattern, which indicated their extensive 

participation in skeletal muscle functions (Additional 
file 1: Fig. S4d).

Genome‑wide chromatin interaction pattern in porcine 
skeletal muscle
We investigated genome-wide chromatin interac-
tion pattern to reveal the effect of H3K27ac-mediated 
chromatin interactions at the transcriptional level. We 
compared the expression pattern of genes regulated by 
active promoters (P) and enhancers (E) (with or with-
out) (Fig.  2a) and found that, as expected, the genes 
with P interactions exhibited higher expression levels 
than those without corresponding interactions, and 
the genes with E interactions also had higher expres-
sion levels than those without corresponding interac-
tions. By contrast, the expression levels of genes with 
P interactions were significantly higher than those 

Fig. 2  Comprehensive analyses of chromatin interactions and gene expression. a Genes with or without regulation by active promoters (P) 
and enhancers (E). Type I, genes without P and E; Type II, genes with E and without P; Type III, genes with P and without E; Type IV, genes with 
both E and P, respectively. b Expression of four types of genes in LW, type I (n=6381), type II (n=1308), type III (n=2163), and type IV (n=8314) 
by Mann-Whitney U single-tailed test with P values from left to right: 4.2×10−131, 1.0×10−38, and 6.9×10−60. c Donut plots (pie charts) of the 
percentages of loop interaction types. E–E, loops with both anchors covered with enhancers; P–P, loops with both anchors covered with active 
promoters; P–E, loops with one anchor covered with active promoter and the other anchor covered with enhancer; E-none, loops with just one 
anchor covered with enhancer; P-none, loops with just one anchor covered with active promoter; Unclear, loops with no anchor covered with 
active promoter and enhancer. d Expression of genes categorized according to the number of enhancers in LW. Linear regression of the mean gene 
expression level was performed (P value < 2.2 × 10−16, Kruskal−Wallis test). e Interaction of KCNS3 with different counts of enhancers in LW and MS. 
f Interaction of TAB1 with different counts of enhancers in LW and MS
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with E interactions (Fig. 2b and Additional file 1: Fig. 
S5a), which might be explained by the possibility that 
P (proximal elements) might exert a stronger influence 
than E (distal elements).

Further, to examine global chromatin characteristics 
mediated by H3K27ac loops, the type of loop-linked 
cis-regulatory elements were used to categorize chro-
matin interaction types. Chromatin interaction loops 
were highly enriched in active cis-regulatory regions, 
approximately 95% loops were linked to at least one 
active cis-regulatory element on either loop anchor in 
both breeds (Fig.  2c). E–E and E–P interaction types 
made up the two biggest chromatin interactions in 
both breeds, the sum of which accounted for almost 
half of total chromatin interaction, indicating that 
enhancers played a key role in complex transcription 
regulation. In addition, we found that the genes reg-
ulated by both E–P and P–P interactions were more 
abundantly expressed than the genes regulated by P-P 
alone, followed by E-E alone and basal genes (with no 
cis-regulatory elements detected) (Additional file  1: 
Fig. S5b), supporting our previous result that proximal 
cis-regulatory elements (P) might have more stronger 
effects on the regulation of single genes than distal cis-
regulatory elements (E) acting as one of additive regu-
latory elements.

We further investigated the additive effects of 
enhancers on the regulation of gene transcription. 
In total, 7853 and 6925 genes interacting with one or 
more enhancers were identified from LW and MS, 
respectively (Additional file  1: Fig. S5c). The aver-
age number of enhancers interacting with one pro-
moter was 1.58 and 1.43 in LW and MS (Additional 
file  1: Fig. S5d), which was consistent with the previ-
ous findings that one promoter could be regulated by 
multiple regulatory elements in humans [20, 21]. Mul-
tiple enhancers presented additive effects on the gene 
transcription regulation, a modest correlation was 
observed between the number of enhancers and the 
mean gene expression in each category of genes clas-
sified in terms of the number of interacting enhancers 
(P value < 2.2 × 10−16, Kruskal−Wallis test for linear 
regression) (Fig.  2d and Additional file  1: Fig. S5e). A 
case in point was KCNS3 related to ion channel activ-
ity and potassium channel regulator activity [22], and 
this gene was found to interact with extra five enhanc-
ers in LW, resulting in its higher expression level in 
LW than in MS (Fig. 2e). Another example was TAB1 
involved in various intracellular signaling pathways 
such as TGF beta, interleukin 1, and WNT-1 [23], 
and its expression level was higher in MS than in LW 
due to the increased number of interacting enhancers 
(Fig. 2f ).

Loop interactions contribute to identifying breed‑specific 
transcription regulation
We performed differential analysis through the compar-
ison of LW versus MS, and identified 9598 genes regu-
lated by loop interaction, of which 328 were up-regulated 
in LW and 337 were up-regulated in MS (|log2FC|>1.5, 
P value<0.05) (Fig.  3a). Gene ontology (GO) enrich-
ment analysis (Fig.  3b) indicated that in LW, up-regu-
lated genes such as DYSF, LMOD2, and POPDC2 were 
enriched in muscle development GO terms mainly 
including striated muscle cell differentiation and muscle 
system process. Notably, DYSF is responsible for muscle 
membrane repair machinery during muscle degeneration 
[24], and its function loss is associated with adipogenic 
loss in muscular dystrophy [25]. In contrast, in MS, up-
regulated genes were significantly enriched in GO terms 
associated with metabolism such as NADH regeneration 
and canonical glycolysis. For example, SLN is a key medi-
ator of muscle thermogenesis and whole-body energy 
metabolism [26, 27].

In addition to regulation by chromatin loop interac-
tions, gene expression profiles are simultaneously regu-
lated by transcription factors (TFs). Therefore, we used 
HOMER [28] to identify TF motif enrichment on loop 
anchors of LW up-regulated and MS up-regulated genes 
(Fig. 3c). In LW, key TFs responsible for muscle structure 
development such as MYOG, MYOD and TCF12 were 
highly enriched in the loop anchors of upregulated genes. 
In contrast, in MS, key TFs responsible for muscle energy 
metabolism such as IRF3, a TF maintaining systemic glu-
cose and energy homeostasis were enriched in the loop 
anchors of upregulated genes [29]. These results indi-
cated potential synergistic regulatory roles of chromatin 
loops and TFs in gene transcription.

In addition, we assessed RNA-chromatin interactions 
on loop anchors of up-regulated genes in LW and MS. 
Differences in the levels of chromatin-chromatin inter-
actions and RNA-chromatin interactions were positively 
correlated (Fig. 3d, e), suggesting that these two interac-
tions might be coordinated in transcription regulation. 
Notably, this positive correlation was higher on differ-
ential loop-regulated promoters (R=0.79) (Fig.  3d) than 
on all loop-regulated promoters (R=0.45) (Additional 
file  1: Fig. S5f ), suggesting that this potential coordina-
tion might be reinforced in actively functional genes. 
Furthermore, we performed differential RNA-chromatin 
analysis and identified a total of 11,397 caRNA-regulated 
genes, of which 838 were up-regulated in LW and 1238 
were up-regulated in MS (|log2FC|>2, P value<0.05) 
(Additional file 1: Fig. S5g). We evaluated the chromatin-
chromatin interaction on loop anchors in these caRNA-
differentially-regulated genes. The results indicated that 
the chromatin interaction pattern on these representative 
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loop anchors exhibited high consistency with the change 
of caRNA interaction (Fig.  3f ). Our results were in line 
with the previous report that nascent caRNA-mediated 
RNA-chromatin interactions might be coordinated 
with chromatin-chromatin interactions for regulating 
gene transcription [30]. Next, to investigate the relation 
between genomic variation and breed-specific tran-
scription regulation, we identified 320 and 481 selec-
tion regions (the intersection between the top 5% FST 
and top 5% XP-nSL measured regions) by comparing 
LW and MS, respectively, with European and Asian wild 
boars (Additional file 2: Table S6 and S7). We found that 
LW loop anchors of up-regulated genes were strongly 

enriched in LW selective sweep regions and not in MS 
selective sweep regions, and vice versa for MS (Fig. 3g). 
Taken together, chromatin-chromatin and RNA-chroma-
tin interactions can reveal the breed-specificity in finely-
tuned transcription network and provide epigenetic 
interpretation for genomic variation of complex traits in 
pigs.

Enhancer‑promoter interactions link candidate variants 
to target genes
The high specificity of loop interaction allows to iden-
tify candidate target genes from GWAS leading signals 
for skeletal muscle-related traits. The GWAS leading 

Fig. 3  Differential chromatin-chromatin interactions and RNA–chromatin interactions. a Volcano plots showing chromatin loop up-regulated 
genes in LW and MS. b Top GO BP (biological process) terms enriched with LW and MS up-regulated genes by g:Profiler. Top enriched GO terms 
are ranked by the negative log10 (Q-value). c Enrichment of TF motifs on loop anchors of up-regulated genes in LW and MS. The color of each dot 
denotes the degree of enrichment (calculated as the cumulative binomial distribution by HOMER), and the size of each dot indicates the expression 
level of the corresponding TF. d Scatter plot showing that the differences in chromatin-chromatin interaction and RNA-chromatin interaction 
levels were positively correlated between LW and MS (Pearson correlation, n = 665 promoters). The trend line from linear regression is shown. e 
Change in RNA-chromatin interactions of differential loop-regulated promoters between LW (n = 328) and MS (n = 337), single-tailed Wilcoxon 
test with P values < 2.2×10−16. f Aggregate BL-HiChIP heatmap around differential caRNA-regulated genes and associated loop anchors based on 
RNA-chromatin interaction levels in LW (n = 4105) and MS (n = 2751). g Bar plot of LW up-regulated genes enriched in LW selective regions and 
not in MS selective regions, and vice versa for MS
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signals are categorized into low- and high-marker den-
sity ones, and the former is mainly derived from array-
based sequencing (IlluminaPorcineSNP50K Beadchip 
or IlluminaPorcineSNP60K Beadchip) with a density of 
approximately one SNP per 2×106 bp, the latter is from 
low-coverage sequencing (LCS) with a density of approx-
imately one SNP per 200 bp. Generally, the resolution 
and power of GWAS rely on the density of genetic mark-
ers. However, high-density marker panels are unavailable 
for most agricultural animals, which limits linkage dise-
quilibrium (LD) analysis frequently conducted in human 
studies. Therefore, we employed two distinct strategies 
to obtain the associated SNPs of array-based GWAS and 
LCS-based GWAS leading signals to better accommo-
date the marker density of each approach (Fig. 4a). First, 
we used TAD to locate SNPs associated with array-based 
GWAS leading signals since TADs have been found to 
be fundamental transcriptional regulatory regions that 
can spatially insulate the genome, and cis-regulatory ele-
ments tend to interact with target genes within the same 
TAD. In contrast, we used the LD approach to obtain 
SNPs associated with high-density GWAS leading sig-
nals. After obtaining all the trait-related SNPs, we devel-
oped a 5-step strategy (detailed in the “Methods” section) 
to fine map potential functional SNPs (Fig. 4a). In addi-
tion, to investigate the power of the TAD approach, we 
compared the number of SNPs obtained by TAD and 
LD. Before the 5-step filtering, the TAD approach identi-
fied a candidate SNP pool containing 8292 SNPs and the 
LD approach identified a candidate SNP pool containing 
632 SNPs, only 22.0% SNPs were exclusively identified 
by LD (Additional file 1: Fig. S6a). After the 5-step filter-
ing, TAD approach identified 221 candidate functional 
SNPs and LD approach identified 23 candidate func-
tional SNPs, only 2 SNPs were exclusively identified by 
LD (Additional file 1: Fig. S6a), which indicated that TAD 
approach could enlarge candidate SNP pool and mini-
mize the probability of losing potential true signals.

In total, we identified 223 SNPs regulating 54 candi-
date genes related to 15 traits (Fig. 4b, Additional file 2: 
Table  S8). Only 64 SNPs (28.7%) regulated the nearest 

gene, while 159 SNPs (71.3%) skipped over at least one 
gene to regulate their target genes (Additional file 1: Fig. 
S6b). Furthermore, 17% of SNPs were located on pro-
moters, whereas 83% were on enhancers (Additional 
file  1: Fig. S6b). Altogether, this multi-omics approach 
identified novel trait-related genes and candidate func-
tional SNPs. For example, the previously detected can-
didate target gene related to muscle physiology traits 
(such as glycogen content, meat color, and drip loss) was 
PRKAG3 [31–33], which harbored one nonconservative 
substitution (rs1109104772, known as R200Q), in con-
trast, our models identified one novel candidate func-
tional SNP (rs327909991) (Fig.  4c). SNP rs327909991 
was located in the active promoter of PRKAG3, and this 
SNP was predicted to be able to enhance binding of TF 
PKNOX1 (Fig.  4d). Notably, PKNOX1 is able to exert 
major effects on the sensitivity of the glucose transport 
machinery to insulin and regulates energy metabolism 
in skeletal muscle [34, 35], which is consistent with our 
functional prediction. Another example is related to the 
breeding value of FCR (FCR BV), 30 SNPs were identi-
fied to be located on chromosome 4 in previous study, of 
which the two most significant SNPs were conjectured 
to be associated with METTL11B [36]. In this study, we 
identified a new target gene PRRX1 (which acts as a tran-
scriptional regulator of muscle creatine kinase), and two 
new associated candidate functional SNPs (rs335951963 
and rs324754330). One new SNP was located within an 
enhancer 408.9 kb downstream from PRRX1 and the 
other SNP was located in an enhancer 393.7 kb upstream 
from PRRX1, respectively (Fig. 4e). SNP rs335951963 was 
predicted to be able to disrupt the binding of SIX2, a TF 
involved in muscle energetic adjustment from oxidative 
to glycolytic capacities [37], and SNP rs324754330 was 
predicted to disrupt the binding of TEAD1, a TF which 
plays a critical role in regulating mitochondrial function 
in cardiomyocytes and its function loss could lead to a 
significant decrease in respiratory rates [38] (Fig.  4f ). 
Altogether, the integration of GWAS data with multi-
omics datasets can expand the understanding of both 
new target genes and relevant candidate functional SNPs.

(See figure on next page.)
Fig. 4  Multi-omics analyses of candidate functional SNPs and target genes. a The overall strategy for identification of candidate functional SNPs 
and their corresponding target genes: Firstly, SNPs located within loop-mediated CREs were screened. Secondly, the resultant SNPs located in ATAC 
peaks or footprints were further screened. Thirdly, the obtained SNPs with |ΔAF|≥0.5 (between commercial lean pig breeds and Chinese local pig 
breeds) were retained. Fourthly, the retained SNPs whose corresponding target genes were related to muscle traits and had intra-chromosomal 
RNA-chromatin interactions were screened. Fifthly, those SNPs which were predicted to affect TF binding were identified as final candidate SNPs. b 
Circos plot of 15 muscle-related traits, 54 target genes, and 223 candidate functional SNPs across the genome. Promoter track (orange), enhancer 
track (blue), ATAC peak track (green), and three categories of genes are labeled. c Example of PRKAG3 in LW and MS. Red indicates newly-identified 
candidate functional SNPs and target genes in this study. Orange denotes previously predicted functional SNPs and target genes identified by 
GWAS. The blue bar highlights the candidate functional SNPs. d Predicted SNP affecting the motif of PKNOX1. e Example of PRRX1 in LW and MS. 
Red indicates newly-identified functional SNPs and target genes in this study. Orange denotes previously predicted functional SNPs and target 
genes by GWAS. The blue bar highlights the candidate functional SNPs. f Predicted SNPs affecting the motifs of SIX2 and TEAD1
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Fig. 4  (See legend on previous page.)
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Fig. 5  Validation of newly-identified candidate functional SNPs. a IGV plot of AGE trait regulated by candidate functional SNP based on multi-omics 
analysis. b Phenotypic differences of AGE (days to 100 kg) in a population of 182 LW individuals with different genotypes. The number of animals 
with different genotypes for AGE: nC/C = 21, nC/T = 31, and nT/T = 130. Outliers are shown as individual dots. Statistical significance is determined by 
single-tailed Mann-Whitney U test. The predicted motif affected by the candidate functional SNP is shown at the bottom, and the locus of this SNP 
is highlighted by black dotted line. c, d Phenotypic differences of LMP (Lean meat percentage at 100 kg) and LMD (Loin muscle depth at 100 kg) in 
a population of 2869 Duroc individuals with different genotypes. The number of animals with different genotypes for LMP: nC/C = 344, nT/C = 1306, 
and nT/T = 1135. The number of animals with different genotypes for LMD: nC/C = 2456, nC/T = 328, and nT/T = 11. Outliers are shown as individual 
dots. Statistical significance is determined by single-tailed Mann-Whitney U test. The predicted motifs affected by the candidate functional SNPs 
are shown at the bottom, and the locus of SNPs is highlighted by black dotted line. e The alternative alleles exhibited significantly higher luciferase 
activity compared to the reference alleles. f Distribution of frequency of target alleles with enhanced phenotypic performance for AGE, LMP, and 
LMD traits
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Effects of candidate functional SNPs in pig populations
Based on phenotypic information of two pig populations 
(detailed in Methods), we observed the effects of three 
candidate functional SNPs. Specially, we investigated the 
effect of SNP rs323223548 on the AGE trait. This SNP 
was located in a super enhancer 339.2 kb upstream of its 
target gene KLF6 on chromosome 10 (Fig. 5a), implying 
additional binding of TF TBX2 to this super enhancer 
(Fig.  5b). Pigs with T/T genotype (SNP rs323223548) 
exhibited a significant reduction in days to 100 kg com-
pared to those with C/C genotype in Population I (P 
value = 4.2×10−3, single-tailed Mann-Whitney U test) 
(Fig.  5b). For carcass-related traits LMP and LMD, we 
observed the effects of two candidate functional SNPs in 
Population II. One SNP rs338305516 was located in the 
promoter of MXRA8, and pigs with T/T genotype exhib-
ited significantly higher lean meat percentage (LMP) than 
those with C/C genotype (P value = 8.0×10−3, single-
tailed Mann-Whitney U test), resulting in a potential Vdr 
binding to the above promoter (Fig.  5c and Additional 
file 1: Fig. S7a). The other SNP rs321591161 was located 
in the promoter of TAF11, and pigs with C/T genotype 
displayed significantly higher loin muscle depth (LMD) 
than those with C/C genotype, based on which we spec-
ulated that additional binding of TF YY1 might lead to 
stronger chromatin loop interaction on TAF11 transcrip-
tion regulation, thereby improving the LMD trait of pigs 
with T allele (P value = 2.0×10−2, single-tailed Mann-
Whitney U test) (Fig. 5d and Additional file 1: Fig. S7b). 
Moreover, we performed a luciferase assay to further 
investigate the effects of these three SNPs. The results 
showed that the alternative alleles predicted above exhib-
ited significantly higher luciferase activity than the refer-
ence alleles (Fig.  5e), suggesting that an altered genome 
could affect enhancer or promoter activity in porcine 
skeletal muscle.

We further calculated the allele frequency of the three 
aforementioned SNPs in four commercial lean pig breeds 
and six Chinese local pig breeds to assess their breeding 
potential. The target allele of each SNP with enhanced 
performance for each trait was plotted (Fig. 5f and Addi-
tional file  1: Fig. S8a). The bar chart showed that three 
target alleles exhibited higher frequency in commercial 
lean pig breeds than in Chinese local pig breeds. For 
AGE, target allele (T allele) of rs323223548 was almost 
fixed in Duroc, while less frequency was observed in 
LW, indicating a great improvement potential for LW. 
In contrast, Jinhua and Meishan showed the lowest fre-
quency of this target allele. As for LMP trait, target allele 
(T allele) of Pietrain breed exhibited the highest (~90%) 
allele frequency among the commercial lean pig breeds, 
and the six Chinese local breeds displayed an average 
allele frequency around 40%. In terms of LMD trait, the 

non-target alleles (C allele) were fixed in all six Chinese 
local breeds, suggesting that introduction of new alleles 
from other commercial lean pig breeds might be required 
for breeding improvement of the LMD trait. All the four 
major commercial lean pig breeds except Pietrain exhib-
ited approximately 10% or less of allele frequency on this 
SNP locus, indicating that long-term selection might be 
necessary for continuous improvement for loin muscle 
depth.

Functional networks of chromatin‑chromatin 
and RNA‑chromatin interactions
We identified specific phenotype-genotype relations of 
54 detected target genes for 15 skeletal muscle-associated 
traits mainly based on chromatin-chromatin interactions. 
Next, we investigated major caRNAs bound to the loop 
anchors of these 54 target genes and found that the com-
position and proportion of caRNAs differed between LW 
and MS (Additional file 1: Fig. S8b). Our findings provide 
a candidate RNA library for identification of key caRNAs 
involved in complex muscle-related traits. Interestingly, 
compared to other caRNAs, TTN was the most abun-
dant among these 54 genes (Additional file  1: Fig. S8c), 
implying an extensive functional trans interaction in 
porcine skeletal muscle. We then established a 3D archi-
tectural network based on chromatin-chromatin and 
TTN mediated RNA-chromatin interactions. In total, 
1,835 topologically-associated communities were formed 
within this network (Fig. 6a). Top 20 communities were 
analyzed by functional gene annotation. Among them, 
9 communities showed enrichment in one or more GO 
terms or KEGG pathways (FDR<0.05) (Additional file 2: 
Table S9), suggesting that genes in the same community 
might be functionally related. Interestingly, one of the 
communities harboring 91 genes and 90 enhancers con-
tained 9 out of the above 54 GWAS target genes. Of these 
9 genes, 3 genes (LRRFIP1, PER2, and COL6A3) were 
associated with the trait of FCR breeding value, while the 
other 6 genes (HEXIM1, HEXIM2, GMPPA, DES, BCS1L, 
and PRKAG3) were associated with muscle physiological 
traits such as meat color and drip loss (Fig. 6b), further 
supporting the idea that genes within the same com-
munity tend to function in related biological processes. 
Taken together, our results provide a structural network 
for transcription regulation in which the GWAS-detected 
core genes and the interaction map-linked peripheral 
genes may jointly contribute to complex traits.

Discussion
In pigs, the noncoding region composes the vast majority 
of the genome. GWAS and linkage analyses have identi-
fied many leading signals associated with complex traits, 
most of which are in the noncoding region. Therefore, the 
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investigation of regulatory elements in the non-coding 
regions and the corresponding target genes is pivotal for 
deciphering the biological mechanisms of complex traits.

To explore the interaction between regulatory ele-
ments and their target genes, techniques for reveal-
ing 3D genomic features are needed. In this study, we 
employed high-resolution BL-HiChIP to construct 
maps of H3K27ac-centered chromatin interaction in 
LW and MS. Based on 5 kb resolution, our 3D genome 
map provides detailed topological information prob-
ably for the first time in pig skeletal muscles. Integrated 
analyses of enhancer-promoter interactions revealed 
that about 75% enhancers chose to skip over their near-
est gene to regulate genes in a long-range manner, 
which challenge the commonly used ‘the nearest gene 
model’. Moreover, we found genes regulated by more 
elements in combined regulation modes (E–E, E–P, and 
P–P) exhibited higher expression levels than genes reg-
ulated by no or less regulatory elements. Meantime, the 
epigenetic difference also corresponded to the selective 
sweep signatures in LW and MS, revealing the influ-
ence of long-term artificial selection on finely-tuned 
transcription networks, thus contribute to complex 
phenotypic trait. However, it is difficult for BL-HiChIP 
to directly distinguish actively transcribing genes from 
inactive or transcriptionally poised genes, and BL-
HiChiP can hardly identify inter-chromosomal chro-
matin interaction, thus limiting the ability of assessing 
inter-chromosomal chromatin interaction of actively 

transcribing genes contributing to complex traits. 
Therefore, GRID-seq was adopted to capture RNA-
chromatin interaction to complementarily address 
these issues.

Eukaryotic genomes are pervasively transcribed to pro-
duce RNAs and also bound by a large number of RNAs, 
suggesting their mutual influence and interactions. In 
human and mice, some vital RNAs have been reported 
to play multiple roles. For example, Neat1 induces 
H3K4me3 enrichment to activate gene transcription [39]. 
Malat1 is localized in nuclear speckles and regulates 
gene expression by alternative splicing [40, 41]. Jpx reg-
ulates CTCF anchor site selection, thus influencing the 
formation of chromatin loops [42]. However, the global 
localization and functions of caRNAs in pig skeletal mus-
cle have not been systematically characterized. In this 
study, we identified 1942 and 1488 caRNAs in LW and 
MS. We found that many RNA–chromatin interactions 
were positively correlated with chromatin–chromatin 
interactions, which is especially true with highly differen-
tially regulated genes with breed-specificity. After identi-
fying the target genes and candidate functional variants 
by GWAS and enhancer-promoter interaction maps, 
we further identified enriched caRNAs as well as their 
interactions with chromatin in response to differential 
transcription regulation between LW and MS. Notably, 
we identified a new transcript (Tx. 808) whose caRNAs 
were highly enriched in the above-mentioned 54 genes in 
MS, and this transcript is valuable for further studies of 

Fig. 6  Functional communities of chromatin-chromatin and RNA-chromatin interaction network. a The network of all functional communities, 
some communities are highlighted and labeled. b One community harboring 9 genes out of 54 GWAS-detected genes (3 growth-associated genes 
and 6 meat quality-related genes)
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caRNA-mediated transcription regulation of commercial 
lean pig breeds and Chinese local breeds.

Most importantly, we observed extensive trans inter-
action between TTN and 54 GWAS target genes, indi-
cating that transcriptional regulation of porcine skeletal 
muscle genes was associated with TTN-mediated trans 
interaction. In human, this TTN-mediated trans inter-
action was also observed during cardiogenesis, which 
led to genomic reorganization [43]. Based on the above 
observations, we established a transcriptional network 
in which functionally related genes such as meat quality- 
and growth-related genes can form communities through 
chromatin-chromatin interactions and RNA-chroma-
tin interactions, thus co-regulating certain biological 
processes.

In conclusion, the network we built provides a model 
for identifying candidate genes related to certain muscle 
traits so as to provide a better explanation for the herit-
ability contribution. Previous studies have reported that 
a quantitative phenotype model explaining complex 
traits is based on several core genes and a large num-
ber of peripheral genes, and co-regulation of core genes 
and peripheral genes might be crucial for explaining 
the genetic contribution of complex traits [19, 44]. Our 
results provide an approach for identifying a large num-
ber of peripheral genes by functional communities con-
nected by chromatin and RNA interactions.

There are some limitations in combined analyses in 
this work. The first one is that the power of GWAS for 
identifying functional SNPs is limited due to the low SNP 
marker density [45]. The size and quality of the candi-
date SNP pool used for downstream multi-omics filter-
ing rely on the density of SNP markers [46]. High SNP 
marker density can result in a relatively small SNP pool 
and less noise, thus more effectively identifying candidate 
functional SNPs. Furthermore, the GWAS leading signals 
were collected from different pig breeds and hybrids, but 
in our study, the BL-HiChIP and GRID-seq were only 
employed for LW and MS. Therefore, a breed-specific 
design of BL-HiChIP and GRID-seq experiment tar-
geting different breeds might be needed to enhance the 
power of multi-omics analyses in further study.

Conclusions
This study provides systematic fine mapping and gene 
prioritization based on 262 GWAS leading signals related 
to 15 complex pig skeletal muscle traits. Our 3D struc-
ture of the genome and related caRNAs sheds insight into 
the function of both distal and proximal regulatory ele-
ments. Our high-resolution chromatin interaction maps 
are valuable for identifying candidate target genes and 
corresponding cis-regulatory elements. The method and 
data presented in this study provide rich resources for 

functional genomics studies related to complex skeletal 
muscle traits.

Methods
Pig tissue collection
We used skeletal muscle tissues (longissimus dorsi) from 
two male piglets of two weeks old LW and MS. The sam-
ples were snap-frozen in liquid nitrogen. All experimen-
tal protocols were approved by the Ethics Committee of 
Huazhong Agricultural University (HZAUSW-2018-008).

Publicly available data used in this study
All GWAS signals were collected from literature, as listed 
in Additional file  2: Table  S3. Gene expression profiles, 
ChIP-seq (H3K4me3 and H3K27ac), ATAC-seq bigwig 
and peaks, cis-regulatory  elements (CREs)  and Hi-C 
results including TAD and TAD boundaries were derived 
from a previous study [16, 47]. The 78,334,029 SNPs from 
WGS analysis of four commercial lean pig breeds (LW, 
Pietrain, Landrace and Duroc, 185 individuals in total) 
and six Chinese local pig breeds (MS, Tongcheng, Ron-
gchang, Jinhua, Erhualian and Bamei, 89 individuals in 
total) were obtained from ISwine database (http://​iswine.​
iomics.​pro/​pig-​iqgs/​iqgs/​index), further information and 
requests for this dataset of ISwine may be directed to 
the corresponding lead contacts, Yuhua Fu (yhfu2​012@​
gmail.​com) and Shuhong Zhao (shzhao@​mail.​hzau.​edu.​
cn) [48]. All data were aligned to the Sus11.1 reference 
genome.

Animal population, phenotypes, and genotyping
This study used two pig populations. Population I 
included a total of 182 LW pigs, and they were bred 
under the same feeding and management conditions in 
standard commercial pens. AGE was measured from 70 
to 115 kg and then adjusted to 100 kg. Ear tissue samples 
were collected and preserved in 75% alcohol and stored 
in a refrigerator. Genomic DNA was extracted from fro-
zen collected ear tissue samples using Tecan Freedom 
EVO NGS workstation with TIANGEN magnetic ani-
mal tissue genomic DNA kit. All the DNA samples had 
a concentration of ≥40 ng/μL and an amount of ≥1 μg. 
Genotyping of target SNPs was performed by sequenc-
ing. Population II included a total of 2869 Duroc pigs, 
and their genotyping was based on a Tn5-based low-
coverage sequencing method. The phenotyping targeting 
LMD and LMP was performed by Yang et al. [49]. Both 
genotyping and phenotyping information of population 
II was deposited in GigaDB [50].

Statistics and reproducibility
Statistical analyses were performed using Python 3.6.6. 
All of the statistical tests used are described in the 

http://iswine.iomics.pro/pig-iqgs/iqgs/index
http://iswine.iomics.pro/pig-iqgs/iqgs/index
yhfu2012@gmail.com
yhfu2012@gmail.com
shzhao@mail.hzau.edu.cn
shzhao@mail.hzau.edu.cn
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relevant sections of the paper. P values were provided 
as exact values when possible; otherwise, they were 
reported as a range. The exact sample size (N) for each 
comparison group was provided in the figure and/or the 
legends. All the GRID-seq and BL-HiChIP libraries were 
generated and sequenced in duplicates. Mann-Whitney 
U single-tailed test results were presented in Fig. 2 b and 
Fig.  5 b–d and Additional file  1: Figure S5a-b. Kruskal-
Wallis test results were shown in Fig. 2d and Additional 
file 1: Figure S5e. Wilcoxon single-tailed test results were 
displayed in Fig. 3e. Paired T test results were exhibited 
in Fig. 5e.

BL‑HiChIP library construction
Approximately 0.2 g of frozen muscle tissue was ground 
into a fine powder under liquid nitrogen conditions and 
fixed with cross-linking buffer (1% formaldehyde, 0.1 M 
NaCl, 1 mM EDTA, 0.5 mM EGTA, and 50 mM Hepes) 
for 15 min at room temperature. The cross-linking reac-
tion was terminated by adding glycine at a concentration 
of 0.2 M. The sample was centrifugated at 2500 rpm for 
10 min at 4°C, and then the sediment was collected and 
resuspended in tissue lysis buffer (containing 10 mM 
Tris-HCl pH 8.0, 10 Mm NaCl, 0.2% v/v Igepal CA630, 
1× protease inhibitors), and incubated on ice for 30 
min. The tissue was lysed and the nuclei were extracted. 
The impurities were removed with a 40 μL cell strainer 
to obtain high-purity nuclei. The resultant nuclei were 
resuspended in 1 mL SDS buffer (1×CutSmart and 0.5% 
SDS) and incubated for 10 min at 62°C, followed by the 
addition of 200 μL 10% TritionX-100 and incubation 
at room temperature for 10 min to neutralize the SDS. 
The nuclei were pelleted and washed with 1X Cutsmart 
buffer, and chromatin was digested with 1 U/μL AluI 
restriction enzyme at 37 °C for 7 h. The nuclei were 
collected, resuspended in 500 μL A -tailing solution, 
incubated for 1 h at 37 °C, pelleted again, resuspended 
again in 500 μL ligation solution added with bioti-
nylated bridge linker, and incubated overnight at 16°C. 
Nuclei were fragmented by Covaris S220. Subsequently, 
7.5 μg antibody (H3K27ac, Abcam Cat# ab4729) and 
30 μL M-280 sheep anti-rabbit IgG Dynabeads (Ther-
moFisher, 11203D) were used to enrich the H3K27ac-
mediated chromatin complexes. Chromatin complexes 
(ChiP-DNA) were purified and fragmented with Tn5. 
Streptavidin C-1 beads were used to pull down the DNA 
fragment with structure of DNA-linker-DNA. Library 
preparation and quality control were performed by the 
previously reported method [51].

BL‑HiChIP data processing
ChIA-PET2 software [52] was used to trim the linker 
for the BL-HiChIP sequencing data. The read pairs 

were aligned to the Sus11.1 reference genome using the 
BWA-MEM version 0.7.17 (r1188) [53] with a param-
eter of -SP5M. The invalid alignments were filtered with 
Pairtools (version 0.3.0) by removing duplicate reads, 
and only the reads identified as UU were retained. The 
aligned reads were assigned to one restriction fragment 
according to the reference genome and the restriction 
enzyme to separate the invalid ligation products from the 
valid pairs. Only valid pairs with two different restriction 
fragments were used for loop calling.

Reproducibility analysis for BL‑HiChIP
In order to detect the reproducibility of BL-HiChIP data, 
we first constructed a union set of significant loops in at 
least one replicate and then calculated the contact counts 
of these loops in two replicates with missing values 
replaced by zero. R function cor() was used to investigate 
the correlation between replicates. We merged samples 
of each breed for the subsequent analyses. In addition, we 
also used HiCRep [54] to assess the reproducibility of our 
BL-HiChIP data. By smoothing sparse matrix and adopt-
ing a stratum-adjusted correlation coefficient (SCC), we 
measured the reproducibility based on three different 
resolutions: 5 kb, 10 kb, and 40kb.

Loop calling
FitHiChIP [17] was used to identify peak-to-all inter-
actions using the peaks obtained from independent 
H3K27ac ChIP-seq. Genome-wide intrachromosomal 
pairs with an interaction distance of 5 kb-2 Mb were 
retained. The false discovery rate (FDR) values for each 
pair were calculated with default set. Bias correction 
was performed using coverage-specific bias at 5-kb 
resolution.

Differential analysis of BL‑HiChIP loop calls 
and visualization
We used an approach similar to calling SIP [55] to anno-
tate loop-mediated genes in each breed. For each active 
promoter, we calculated the cumulative interaction score, 
defined as the sum of −log10FDR for interaction inten-
sity. We then performed quantile–quantile normalization 
under the assumption that all the signals were identically 
distributed across all samples. Next, we used DEseq2 [56] 
to identify differentially regulated genes between LW and 
MS. We used Coolbox [57] for BL-HiChIP heatmap visu-
alization and Coolpup.py [58] for pile-up visualization.

GO enrichment analysis
For gene function analysis, we used Ensembl Biomart 
to transfer swine gene IDs into human IDs, and then 
uploaded to g:Profiler (https://​biit.​cs.​ut.​ee/​gprof​iler/​gost) 
to obtain GO:BP functioning profiles.

https://biit.cs.ut.ee/gprofiler/gost
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Transcription factor motif enrichment analysis
For differential transcription factor binding analysis, a 
200-bp window was taken from open chromatin peaks on 
loop anchors of differential loop-mediated genes. Open 
chromatin peaks of these two breeds were used as back-
ground for each other.

Footprint analysis
We used two software for footprint analysis. TOBIAS 
[59] was used for correction of insertion bias at Tn5 
transposase sites with the command of ‘ATACorrect’. 
The ‘ScoreBigwig’ command was used to calculate a con-
tinuous footprinting score at all sites. To predict specific 
transcription factor binding, the footprinting scores were 
combined with vertebrate motif library JASPAR2018.

We also used Wellington [60] for footprint analysis. 
The broad ATAC peaks were determined using MACS2 
[61]. Peaks with P value less than 10−5 were used to 
identify footprints based on the “wellington_footprints.
py” script with a parameter of “-A” and a threshold of P 
value<10−20.

Selective sweep analysis
In this study, we combined genetic differentiation coef-
ficient FST and haplotype composition difference XP-
nSL to detect genome-wide selection signals in LW 
and MS. Detailed methods are described in previous 
research [62].

Target SNP identification based on GWAS signals
GWAS signals were listed in Additional file  2: S4 
and S5. Since GWAS was performed by IlluminaPor-
cineSNP50K Beadchip or IlluminaPorcineSNP60K 
Beadchip, we first transferred Sus10.2 SNP loci infor-
mation into Sus11.1 loci. To improve the quality and 
lessen the noise of GWAS leading signal-associated 
SNP pool, we used two strategies to identify candi-
date SNPs based on GWAS signals. Specifically, for 
low-coverage sequencing (LCS)-based GWAS, we used 
a linkage disequilibrium (LD) score ≥0.5 to identify 
the SNPs associated with GWAS leading signals, and 
for array-based GWAS, we used TAD to identify the 
SNPs associated with GWAS leading signals. The spe-
cific screening criteria and steps of target SNPs based 
on GWAS signals were as follows. Firstly, SNPs located 
within loop-mediated enhancers or active promoters 
were screened. Secondly, the resultant SNPs located in 
ATAC-seq peaks or footprints were further screened. 
Thirdly, the obtained SNPs with the absolute value of 
delta allele frequency (ΔAF=mean AF of four com-
mercial lean pig breeds - mean AF of six Chinese local 
pig breeds) were retained (|ΔAF|≥0.5). Fourthly, the 
retained SNPs whose corresponding target genes were 

related to muscle traits and had intra-chromosomal 
RNA-chromatin interactions were screened. Fifthly, 
those SNPs which were predicted to affect TF binding 
were identified as final candidate SNPs.

Effects of SNP on TF binding
We assessed the matching status of the screened SNP 
with known transcription factor binding sites by R 
package motifBreakR [63], and SNP whose effects were 
“strong” was kept and investigated.

Luciferase activity assay
The reporter gene vector pGL3-Basic vector was used for 
promoter activity validation in this experiment. The vali-
dated promoter sequence was cloned to the upstream of 
the reporter gene, and the promoter activity was deter-
mined by testing the activity of the reporter gene. The 
reporter gene vector pGL3-promoter vector was used for 
enhancer activity validation in this experiment. The vali-
dated enhancer sequences were cloned to the upstream 
of the reporter genes, and the enhancer activity was 
determined by testing the activity of the reporter gene. 
Luciferase activity was detected after 48 h post-transfec-
tion in 3D4/21 cells.

Construction of GRID‑seq library
GRID-seq was performed by the method reported by 
Li et al. [64]. Approximately 0.2 g of frozen muscle tis-
sue was ground into a fine powder under liquid nitro-
gen conditions and further fixed in 1% formaldehyde 
for 10 min. Samples were permeabilized in 1 mL equi-
librium buffer (0.2% NP-40, 5 mM Tris-HCl pH 7.5, 
10 mM NaCl, and 1× protease inhibitor cocktail) for 
15 min on ice with brief centrifugation. Samples were 
incubated in 300 μL of Cutsmart buffer (0.5% SDS) 
for 10 min at 62 °C, added with 50 μL Triton X-100 
(10%) to quench the SDS, and chilled on ice to prepare 
nuclei. The prepared nuclei were collected through 
brief centrifugation, washed twice with 1× Cutsmat 
Buffer, resuspended in 500 μL AluI solution (1× Cut-
smart Buffer, 1% Triton X-100,1 U/μL RiboLock, 0.5 
U/μL AluI (NEB), and 1× protease inhibitor), and 
incubated at 37 °C for 4 h to digest chromatin. After 
digestion, DNA ends were added with dA tailing mod-
ule, and then repaired through DNA/RNA 5′ phospho-
rylation and 3′ dephosphorylation using PNK (NEB) at 
37 °C for 1.5 h.

To ligate in  situ linkers to RNA, RNA ends were 
ligated to an oligonucleotide “bridge” molecule contain-
ing a 5′-adenylated ssDNA overhang using 4U/μL T4 
RNA Ligase 2-truncated KQ (NEB) and incubated at 25 
°C for 3 h. To ligate in situ linkers to DNA, nuclei were 
collected, washed twice with 800 μL of 1× DNA Ligase 
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Buffer (NEB) to remove free linkers, resuspended in 1 
mL of DNA Ligation Solution (0.2 U/μL RiboLock, 1× 
DNA Ligase Buffer, 1 mg/mL BSA, 1% Triton X-100, and 
1 U/μL T4 DNA Ligase (NEB)), and incubated overnight 
at 16 °C. Subsequently, the nuclei were washed, and the 
RNA strand was stabilized by first-strand synthesis of 
the RNA through the extension of the bridge by Bst 3.0 
polymerase.

Crosslinking reversal of and DNA/RNA purifica-
tion were performed. The pellets were resuspended in 
300 μL proteinase K solution (15 mM EDTA, 10 mM 
Tris-HCl, pH 7.5, 0.5% SDS, and 1 mg/mL proteinase 
K (Ambion)), and incubated at 65 °C for at least 2 h in 
Thermomixer. After being added with 300 μL solution 
Phenol:Chloroform:Isoamyl Alcohol (pH 8.0, Thermo 
Fisher), total DNA/RNA were precipitated with solution 
(2 μL of GlycoBlue, 30μL of 3 M NaOAc (pH 5.5), and 300 
μL of 100% isopropanol) on ice for at least 2 h, followed 
by centrifugation for 30 min at 16,000g. Total DNA/RNA 
was dissolved in 51 μL of H2O to obtain a total amount of 
~10 μg DNA/RNA.

Biotin-labeled DNA/RNA was pulled down. The 50 
μL DNA/RNA was added to M280 streptavidin mag-
netic beads, washed for three times with 1× B&W 
Buffer (5 mM Tris-Cl pH 7.5, 0.02% Tween-20, 0.5 mM 
EDTA, 1 M NaCl), and incubated for 45 min at room 
temperature, washed again with 500 μL of 1×B&W 
Buffer for 5 times, and resuspended in 100 μL freshly 
prepared 150 mM NaOH at room temperature for 10 
min, followed by centrifugation. Afterwards, the super-
natant was collected to a 1.5 mL tube and neutralized 
with 11 μL 10 × TE buffer and 6.5 μL of 1.25 M ace-
tic acid. Single-stranded DNA (ssDNA) was precipi-
tated in solution containing 2 μL of GlycoBlue, 10 μL 
of 3 M NaOAc (pH 5.5), and 100 μL of 100% isopro-
panol. Second strand synthesis reaction was performed 
by adding 0.5 μL of 10mM dNTP and 5 U klenow Exo-
(NEB) at 37°C for 1 h. Next, the synthesized double-
stranded DNA was digested with MmeI buffer (5 pmol 
SAM(NEB) and 4 U MmeI) at 37°C for 1 h. After MmeI 
digestion, DNA was extracted and purified, the 84bp 
target band was cut and used for Illumina TrueSeq 
library construction.

GRID‑seq raw data processing
After sequencing, reads from each library were 
trimmed, and those with a minimum length of 79 bp 
were retained. To precisely obtain reads and minimize 
the loss of reads with the full linker sequence absence 
due to sequencing and/or PCR errors, we adopted a 
multi-step strategy: (1) The reads that contained the 
core 12 bp seed sequence in linker were retained; (2) 
MmeI motifs were used to define linker boundaries, 

and (3) linker orientation was used to determine the 
RNA or genomic DNA origin of a read. With this 
strategy, paired DNA-RNA reads with length ranging 
from 17 bp to 23 bp were obtained. For each captured 
RNA read (cDNA), we used its reverse complement 
sequence as the formal read, and thus this read had the 
exact same sequence with the RNA product sequence. 
All paired reads were assigned to unique paired IDs. 
All clean read pairs were aligned separately to the pig 
reference genome (Sus11.1) using Bowtie2 [65] with 
the parameter “–local.” The read pairs that contained 
ambiguous mapping information were removed by 
SAMtools [66] using the parameter “-Sbq 2.”

GRID‑seq pipeline and downstream analyses
The chromatin-enriched RNAs were identified, the non-
specific background was constructed, and specific RNA–
chromatin interaction was characterized by the method 
reported by Li et al. [64].

R package “ggplot2” and “ggtern” were used to plot 
the ternary plot, in which each dot represented one 
chromatin-enriched RNA. The size of each point was 
proportional to the number of RNA reads at log2 scale. 
The position of each point in the triangular coordinates 
reflected the relative percentages of local, cis, and trans 
modes of RNA interaction.

Circos [67] plots were used to represent trans RNA 
interactions across the genome. The links were based on 
the background-corrected RNA-DNA interaction. The 
outer circle of histograms was plotted based on densities 
of the active promoters, typical enhancers, and super-
enhancers in the 1Mb bin.

Fruchterman‑Reingold model visualizes complex networks 
of chromatin interactions
We used Fruchterman-Reingold model developed by 
Peter Eades to visualize the chromatin-chromatin and 
RNA-chromatin interactions across the genome [68]. 
This model aims to reduce the intersection of edges in 
the layout and keep the length of edges as consistent as 
possible. Through continuous iterations, the whole layout 
reached dynamic equilibrium and tended to be stable. 
The total energy of the system was calculated according 
to the following formula.

where, d(i,j) represents the Euclidean distance between 
the two points; s(i,j) represents the natural length of the 
spring; and k is the elasticity coefficient.

Es =

n∑

i=1

n∑

j=1

1

2
k(d(i, j)− s(i, j))2
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